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Abstract The Design of Experiment, DoE, was applied to support the development
of an innovative optical platform for ion channel drug screening. In this work,
DoE was exploited to investigate a set of software parameters instead of process
variables, an approach that has been only rarely explored. In particular, it was used
to define a standard analytical configuration for a MatLab-based image analysis
software that has been developed in the laboratory to extract information from
images acquired under the drug screening conditions. Since the choice of the type
of analysis and filtering, as well as their interactions, was known to affect the final
result, the aim was to identify a robust set of conditions in order to obtain reliable
concentration-response (sigmoidal) curves in an automated way. We considered
five parameters as factors (all qualitative) and two characteristics of the sigmoidal
curve as reference outputs. A first DoE screening was performed to reduce the
number of needed levels for one factor (an unconventional approach) and a second
optimization study to define the best configuration setting. Image stacks from three
different experimentation days were used for the analysis and modelled by blocks
to investigate inter-day variations. The optimized set of parameters identified in this
way was successfully validated on different cell lines exposed to their references
drugs. Thanks to this study, we were able to: find the optimized configuration for the
analysis, with a reduced number of trials compared to the classical “One Variable at
A Time” approach; acquire information about the interactions of different analytical
conditions as well as the inter-day influence; and, finally, obtain statistical evidence
to make results more robust.
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1 Introduction

1.1 Use of Design of Experiment in Research

The design of experiment (DOE), also known as experimental design, was devel-
oped by Ronald Fisher in the early 1920s. It is a statistical method aimed to plan
and analyze experiments, in order to extract the maximum amount of information
with the fewest possible number of runs. It allows also to build regression models
and to optimize the output by choosing proper variable settings. The traditional way
of conducting experiments is intended to change One Variable at A Time (OVAT),
thus accepting the risks to become trapped in a local optimum, missing the global
optimum. The DoE allows changing simultaneously all the variables, helping in
finding their best combination [6, 12, 14]. Moreover, it provides a regression model
that, in the range of variables used to build it, can make predictions for values
different from those used in the study (see: [1, 18]).

During the last decades, DOE has been successfully applied to optimize pro-
cesses in chemistry and engineering [13] as well as in pharmaceutical and bio-
pharmaceutical industry, both in development and production [2, 7, 9–11, 14, 22,
25, 26]. New applications are emerging in biomedical research, specifically in
medium-high throughput assays and in the optimization of laboratory protocols
[3, 4]. In particular, DoE has recently been used in drug screening, where progress
in molecular biology and advanced technologies has given new opportunities to
test large chemical libraries against biological targets. However, the introduction
of combinatorial chemistry and high-throughput screening has not met the expec-
tations, rather it has been accompanied by a decline in productivity [20]. This can
be ascribed to a number of reasons, including the fact that the process of selection
leaves behind many potentially interesting molecules [16, 23]. This has drawn the
attention to cell-based assays and to more robust screening approaches in order to
increase R&D efficiency/efficacy, and thus productivity. In this respect, attention has
also grown toward methods for an efficient development and setup of the assays.
In the last decades, there are several examples of the application of DoE in drug
screening [5, 11, 15, 17, 24], mainly related to the optimization of biological and
biochemical process condition. Other examples are oriented to optimization of data
processing in metabolomics [8, 27]. The use of experimental design for optimizing
software parameters is still poorly explored (e.g. [21]).

In this paper, we report the use of DoE for the fine set up of the analytical
processing in a newly developed drug screening approach.
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1.2 Dedicated Image Analysis Software for a New Drug
Screening Approach

An innovative optical platform for ion channel drug screening, based on a pro-
prietary approach, has been developed by a multidisciplinary team. Briefly, cells
expressing the channel of interest are loaded with a fluorescent voltage-sensitive
dye and the effect of a drug is revealed by the fluorescence values recorded before
and during exposure to electrical stimulation (see EP2457088 patent for more
details). Images acquired under the above conditions are processed by a MatLab-
based Image Analysis (MaLIA; a program developed in the laboratory) that offers
the possibility to employ different filters, parameters and types of analysis. Data
representative of the cellular response to the electric pulses are used to extrapolate
changes in resistance/conductance; these values are put in relation with increasing
concentrations of the molecule of interest, thereby obtaining a typical sigmoidal
Concentration-Response (CR) curve defined by a set of qualitative and quantitative
parameters. In the course of the project, the MaLIA has progressively evolved,
gaining in flexibility, to explore multiple analytical options. In this development
phase, different analysis configurations were experimented: the parameter space
was narrowed to a set of five, four of which varying between two values only. The
final goal of the project was to define the optimized values of these parameters, in
order to perform a standard analysis in full automation, without external, arbitrary
interventions. To this end, we employed the DoE to evaluate the effects of different
parameters/filters implemented in the MaLIA as well as their interactions.

2 The Design of Experiment (DoE) Method

The different values assumed by each factor (the experimental variables) are called
levels (typically only two, codified as �1 or C1) and can be either qualitative or
quantitative. The DoE allows evaluating both the influence of single variables (main
factors) and the interplay among factors (interactions), i.e. when the effect of a
factor depends on the level of one or more other factors. A specific combination of
levels is called treatment (or run). Each treatment is evaluated in terms of outputs or
responses, which are representative of the behaviour of the system. The magnitude
of a change in response, when factors are varied, is called effect.

In order to achieve statistically relevant conclusions from experiments, it is
necessary to adopt different statistical principles: randomization (i.e. scrambling
the running order of treatments), replication (i.e. repeating each treatment twice or
more) and blocking (i.e. modelling extraneous sources of variation as special vari-
ables). These principles minimize experimental bias that may mask the responses of
the significant factors (see [18]).
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The term factorial design identifies the most used set of treatments employed to
investigate the effects of factors on a response. The simplest factorial design is called
two-level factorial design, and is used in two forms: full factorial and fractional
factorial design. Full factorial design requires 2K runs, where K is the number of
factors, and generates, with the increasing number of factors, a considerable (even
unmanageable) amount of runs. In case of many factors (e.g. >5), we can reduce
the number of requested runs, based on specific assumptions, such as ignoring
interaction of more than three factors: in this way we perform a fractional factorial
design. Experimental designs reduced to 2K�1 runs are called Resolution V designs.
In these designs, no main effect or two-factor interaction is aliased with any other
main effect or two-factor interaction, but two-factor interactions are aliased with
three-factor interactions. There is also the possibility to consider more than two
levels for each factor, and to create a general factorial design [1].

After performing experiments according to the planned design, results are ana-
lyzed through a graphical interpretation (Factorial Plots and Statistical Plots) and a
set of statistical parameters. The Factorial Plots include the Main Effect Plot and the
Interactions Plot. The former is represented as a straight line: the slope indicates
the direction while its magnitude the strength of the effect. On the other hand,
the Interactions Plot shows how different combinations of factor settings affect the
response: non-parallel lines show interaction between couple of factors. The Normal
Probability Plot (one of the Statistical Plots) is a different representation of a
distribution, with the cumulative percentage on the logarithmic Y-axis and the
ordered values of the observations on the X-axis. In this representation, the Gaussian
distribution appears as a straight line. It is used to check normality of the data and to
find out the most significant ones: non-significant data are dispersed along a straight
line, whereas significant data are apart. In the experimental design, the Normal
Probability Plot is used to evaluate significance and normality of both main and
interaction effects. The Pareto Plot (another Statistical Plot) displays the absolute
values of main and interaction effects: a reference line shows statistically significant
values (P < 0.05). The Normal Plot for Residuals is conceptually the same as the one
used for effects and interactions and estimates the difference (residuals) between
actual and predicted values (calculated by the regression model obtained from the
DoE analysis), to verify whether the data have a Gaussian distribution.

This analysis can be complemented by a number of statistical parameters,
including a regression model describing each response as a function of the selected
factors and information coming from the ANOVA analysis (see: [18]).

As a general approach, a screening analysis is first performed with less stringent
conditions to identify the most significant factors. Subsequently, an optimization
analysis is applied to a narrower set of factors to find the best condition that
optimizes the output(s).

Along with the factorial designs, DoE offers a rich set of other designs, to suit
most requirements. Few examples are:

1. Plackett–Burman design, which evaluates the effects of main factors only, with a
small set of runs. It is mainly used in the screening phase;
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2. Response surface designs (e.g. Central Composite, Box–Behnken), which are
used to identify points of absolute maximum, and to highlight possible nonlin-
earities (for quantitative factors only). They are mainly used in the optimization
phase.

3. Mixture design, which is used when factors are components of a blend, and the
output depends on their relative proportion.

3 Experimental Setup

Experiments were performed on a Chinese hamster ovary (CHO) cell line express-
ing the human transient receptor potential (TRPV1) channel (kindly provided by
Axxam S.p.A) using capsaicin as reference agonist. CHO-TRPV1 cells were stained
with a voltage sensitive dye (VSD; di-4-ANEPPS), and exposed to a square electric
pulse. Local fluorescence values were measured before and during the pulse (Fig. 1,
left and right, respectively) both in the absence and in the presence of capsaicin. As
expected from the poor sensitivity of the VSD ( 8 % fluorescence variation/100 mV),
changes are hardly appreciated at first sight and a sophisticated analysis is necessary
to automatically isolate and evaluate subcellular responsive areas. Further details are
available on the patent EP2457088 and will be reported in a full paper on this new
approach (Menegon et al. in preparation).

Among the different types of DoE designs, we decided to use factorial designs
for two reasons. On the one hand, we needed to evaluate second order interactions

Fig. 1 CHO-TRPV1 cells images before (a) and during (b) exposure to an electrical square
pulse. The signal (differences in fluorescence intensity in specific subcellular regions) is not easily
appreciable without proper data processing
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and Plackett–Burman was not suitable. On the other hand, our factors were typically
at two levels, making inappropriate other analyses such as response surface designs.

The very same stack of images was processed many times with MaLIA, to
cover all the combinations of parameters indicated by the experimental design.
Randomization was not required, because no external bias factors could affect
the running of the software analysis. For DoE analysis, we selected, among the
parameters implemented in MaLIA, the following five factors (variables) that
appeared to influence the output data:

a. Binning: to reduce image noise by combining cluster of pixels into single pixels;
b. Shape-mask (ShapeM): to select the membrane responsive areas;
c. Minimum responses filtering (MinRespFilt): to discard signal values lying inside

the noise range;
d. Response calculation (RespCalc): Fold Change (FC) or Normalized Fold Change

(NFC);
e. Output data filtering (OutputDataFilt): pure statistical or functional (to exclude

variations not coherent with the expected biological response)

We defined also two outputs to evaluate the influence of these parameters on CR
curves:

1. R-squared (Rsq), as a measure of good fitting of the sigmoidal curve;
2. Top minus bottom (T-B), as the difference between highest and lowest values in

the sigmoidal curve (a measure of the efficacy of tested drug).

Finally, in order to account for possible inter-day variations (due to biological
variability and/or changes in the process), we repeated the same set of treatments
on image stacks obtained in three different experimental days, and modelled each
of these replications by blocks.

The MaLIA parameters are qualitative and at two levels only, with the sole
exception of Binning that has three possible levels: for a full evaluation, a general
factorial design with five factors should be employed. According to Anderson and
Whitcomb (see Chap. 7, pp. 133–134): (1) a general factorial design is to be avoided
when the number of factors increases (typically higher than 3), (2) a reduction of
a general factorial design requires ad hoc elaboration. The same authors suggest
making preliminary tests to attempt to reduce the analysis to a two-level factorial.
In our case, a complete general factorial design (5 factors, one of them at 3 levels)
would require 2(5�1) � 3 D 48 runs per replicate that, multiplied by the 3 foreseen
replicates, give a total of 144 runs. As expected, the DoE software we use does
not allow for reducing general factorial designs. In line with the suggestions of
Anderson and Whitcomb, we evaluated the possibility to reduce the number of
levels for Binning. Therefore, we first set an unconventional screening analysis,
by considering the sole two factors directly involved in the extraction of data from
images: Binning (three levels) and Shape Mask (two levels), by using a standard
set of the other parameters. Thanks to the reduction of Binning to two levels, in the
second analysis we were able to evaluate all factors at two levels with a fractional
factorial design. In this way, it was possible to perform the analysis with only 6 C 16
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runs for each replicate. Finally, we made a validation to verify: (1) that there is
no significant interaction between Binning and the other factors; and (2) that the
discarded Binning level was less suitable for optimal results.

We generated Normal Plot and Pareto Plot, to identify statistically significant
factors and interactions, as well as the Main Effect Plot and the Interaction Plot
to evaluate factors influence on each output. Goodness of fit was judged by
the Residuals Plots and other statistical parameters. Blocks provided information
about the influence of different experimental days (inter-day variations). All the
DoE analysis was performed by Minitab, a statistics package developed at the
Pennsylvania State University (Minitab Inc., State College, PA, USA).

4 Results of the First Analysis (Screening)

The first analysis was aimed to find the two most significant values out of the three
possible levels of image Binning and was performed considering the Shape-Mask
as the sole factor able to interact significantly with the Binning. In fact, only these
two variables are directly related to the pixels of the image. Factors and their levels
were as follows:

1. Binning (1 � 1, i.e. no binning; 2 � 2; 4 � 4; referred to as 1, 2 and 4, respec-
tively);

2. Shape-mask (yes; no).

Because of the three-levels Binning factor, a General full factorial design
was used (18 runs, 3 replicates). The screening analysis clearly demonstrates an
interaction between Binning and Shape Mask on the Rsq output (Fig. 2) but not on
the T-B output (Fig. 3).

Figure 2a indicates that residuals for Rsq are normally distributed—i.e. very
close to the line representing the normal distribution—a condition necessary to
proceed with a standard analysis without doing a variable transformation (see: [1]).
The analysis shows a significantly lower Rsq for Binning 1 compared with Binning
2 and even more with Binning 4 (P D 0.04, Fig. 2d). An improvement in Rsq is
observed when Shape Mask is applied (Fig. 2b). The interaction Plot (Fig. 2c)
confirms that Binning 1 gives lower Rsq while Binning 2 and 4 show the best
results. The influence of Shape Mask is maximal with Binning 1, moderate with 2
and negligible with 4. A P-value D 0.248 for the variable Blocks shows no influence
of inter-day conditions for Rsq.

Figure 3a indicates that residuals are normally distributed also for T-B. The effect
of Binning on the T-B output confirms Binning 1 as the worst condition, but also
shows a trend, with Binning 4 better than 2 (see Fig. 3b); interestingly, Shape
Mask has no influence on the T-B considered alone or even in combination with
Binning as shown by the interaction plot (Fig. 3c), where lines are almost parallel.
A P-value < 0.001 for the variable Blocks indicates a significant influence of inter-
day conditions on T-B. Overall, Binning was the sole significant factor (P < 0.01,
Fig. 3d).
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Fig. 2 Minitab graphs of the screening analysis for Rsq: Normal probability plot for Residuals
(a), Main Effect Plot (b) and Interaction Plot (c). The table in (d) shows P for the chosen factors
and their interactions

Fig. 3 Minitab graphs of the screening analysis for T-B: Normal probability plot for Residuals
(a), Main Effect Plot (b) and Interaction Plot (c). The table in (d) shows P values for the chosen
factors and their interactions
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5 Results of the Second Analysis (Optimization)

The aim of the second analysis was to define an optimal parameter configuration,
by considering the following factors/levels:

1. Binning (2; 4);
2. Shape-mask (yes; no);
3. Minimum response filtering (yes; no);
4. Output data filtering (Stat; Funct);
5. Response calculation (NFC; FC).

Under these conditions, a Full Factorial design would have required 32 runs per
replicate, i.e. the same number of runs needed for an OVAT approach, however, with
the advantage of providing information about interactions. Considering that we were
interested also on the influence of inter-day variability, a minimum of 3 replicates
(performed on image stacks produced in different days) had to be performed. This
would have required a total of 96 runs. In order to reduce this number, we made
the assumption that the interactions of the second order (i. e. interactions of two
factors at a time) were sufficient for a correct approximation in our analysis, also
considering that higher interactions (three factors at a time or more) are expected to
be negligible in most cases (see [19]). Based on these considerations, we reduced
the number of trials by employing the fractional factorial design with resolution V,
which required 48 runs for 3 replicates, at the expenses of the assessment of third
order interactions. Figure 4 shows the results of DoE Analysis for the Rsq output.
Normal probability Plot (Fig. 4a) for Residuals show good fitting. The Pareto Chart
of the Standardized Effects (Fig. 4b) indicates that the only statistically significant
factor is Shape Mask (P D 0.001) while the only significant interaction is Shape
Mask with Response Calculation (P D 0.029).

Taking into consideration the results shown in Fig. 5a, b, we can assume that,
as far as Rsq is concerned, best results are obtained with: Shape-mask, Binning 4,
no Minimum response filtering, Statistical Output data filtering and NFC Response
calculation.

Similar analysis was performed considering T-B as the Output. Normal probabil-
ity Plot (Fig. 6a) for residuals show good fitting. The Pareto chart of the standardized
effects indicates that all the main factors, but Minimum response filtering, are sta-
tistically significant (Fig. 6b): Output data filtering (P < 0.001); Binning (P < 0.001);
Shape-mask (P D 0.002); and Response calculation (P D 0.004). Minimum response
filtering has a significant interaction with Output Data Filtering (P D 0.021).

Considering the Main Effects Plot (Fig. 7a) and the Interaction Plot (Fig. 7b)
for T-B, we can infer that best results are obtained with Shape-mask, Binning 4,
Statistical Output data filtering, no Minimum response filtering and NFC Response
calculation.

Based on the above results, we were able to define an optimized configuration
(Table 1) and a suboptimal one (Table 2).
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Fig. 4 Minitab graphs for Rsq optimization analysis: the Normal Probability Plot for Residuals
(a) indicates an suitable distribution of residuals; the Pareto of the Standardized Effects (b) indi-
cates that there are only two significant effects (i. e. laying beyond the vertical line that marks the
threshold for Alpha D 0.05): Shape Mask and the interaction between Shape Mask and Response
Calculation

C-R curves were then calculated with both the optimized and the suboptimal set
on the same data used for DoE analysis. Figure 8 illustrates an example in which
the C-R curve obtained with the optimized set exhibits an Rsq value improved
from 0.91 to 0.99 and a T-B value from 0.28 to 0.49, which represent a percent
improvement (defined as (PSopt � PSsubopt)/PSsubopt, where PS D parameter set) of
respectively C8.8 % (Rsq) and C75 % (T-B).

As a final consideration, P-value for BLOCKS showed an influence of inter-day
conditions that is significant for T-B (P < 0.001) but not for Rsq (P D 0. 147).
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Fig. 5 Minitab graphs for Rsq optimization analysis (factorial plots): the Main Effects Plot
(a) confirms that the Shape Mask effect is the most important among single factors and that best
results are obtained when the mask is applied: the Interaction Plot (b), shows the best combination
for Shape Mask and Response Calculation (if ShapeM D yes, both values for RespCalc are
suitable)
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Fig. 6 Minitab graphs for T-B optimization analysis: the Normal Probability Plot for Residuals
(a) indicates a suitable distribution of residuals; the Pareto of the Standardized Effects (b) shows
that all single factors, but the Minimum Response Filter (MinRespFilt), are significant, while only
one interaction, the one between MinRespFilt and OutputDataFilt, lays beyond the vertical line
(threshold for Alpha D 0.05)

6 Validation of Obtained Optimized Configuration

The optimized parameter configuration we obtained with the previous analysis was
then validated.

As a first step, we verified the initial hypothesis that Binning had no significant
interactions with factors other than ShapeM. Indeed, Figs. 4a and 6a show that
the interactions between Binning and the other factors do not reach statistical
significance. Of note, in the same Fig. 4a we can appreciate that ShapeM has a
significant interaction with RespCalc, clearly indicating that it is not possible to
separate the pixel-related factors from the others.
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Fig. 7 Minitab graphs for T-B optimization analysis (factorial plots): the Main Effects Plot
(a) indicates the best values for the significant factors: Binning D 4, ShapeM D yes, Output-
DataFilt D Statist and RespCalc D NFC. In the Interaction Plot (b), the value MinRespFilt D no
together with OutputDataFilt D Statist are the significant interacting factors values that optimize
the output T-B
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Table 1 Optimized parameter set for Rsq and T-B

Optimized configuration

Factor
Optimized
level for Rsq

Optimized
level for T-B

Optimized
choice

Binning n.i. 4 4
ShapeMask YES YES YES
Minimum response filtering n.i. NO NO
Output data filtering n.i. Stat Stat
Response calculation NFC NFC NFC

n.i. not influent

Table 2 Suboptimal parameter set for Rsq and T-B

Suboptimal configuration

Factor
Suboptimal
level for Rsq

Suboptimal
level for T-B

Suboptimal
choice

Binning n.i 2 2
ShapeMask NO NO NO
Minimum response filtering n.i. YES YES
Output data filtering n.i. Funct Funct
Response calculation FC FC FC

n.i. not influent

Afterwards, to validate the rejection of Binning D 1 in the first analysis, we ran
MaLIA on 8 different image stacks with the same parameters employed in the
optimized (Table 1) and suboptimal (Table 2) configurations, with the exception
of Binning value set to 1. The substitution of Binning D 1 worsened the value
of Rsq and T-B in both the optimized (�6 % and �30 %, respectively) and the
suboptimal configuration (�17 % and �54 %, respectively). We can conclude that,
as suggested by the experience during the development of the MaLIA program and
assumed during the design of the first analysis, Binning D 1 minimized the overall
performance. This ex post validation also confirms the validity of the assumptions
we made in the first analysis of this unconventional DoE design.

Afterward, we produced C-R curves with both the optimized and the suboptimal
sets on data from different experiments in order to validate the results in a wide
range of cell and drug types (see Table 3).

Experimental data were randomly selected within a time interval of 2 years,
representing five cellular lines exposed to their reference drugs. Two experiments
for each cell line were considered. Such a wide time interval was used to take into
account also changes due to the evolution of both biological protocols and screening
processes.

The Rsq and the T-B values of the C-R curves obtained with the optimized
and suboptimal parameters sets are compared in Fig. 9a, b and shown as percent
variation ((PSopt � PSsubopt)/PSsubopt) in Fig. 9c. The charts clearly indicate that
the optimized set consistently produces better CR curve: Rqs benefits of a slight
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Fig. 8 CR curves obtained with optimized and suboptimal parameter sets: the CR curve shows
the fractional changes of the membrane resistance at different drug concentrations (log). The CR
curves obtained with the suboptimal (a) and with the optimized (b) parameter sets, on the same
images stack, are compared to put in evidence the marked improvement: Rsq from 0.91 to 0.99,
T-B from 0.28 to 0.49

improvement (up to 4.3 %), while T-B takes much more advantage (up to 90.4 %).
The only exception is represented by an experiment (HEK-293 GABA-A exp. 1), in
which Rsq is lower (�1.2 %) with the optimized set, even though the T-B response
maintains a positive performance of C9.3 %.
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Fig. 9 (continued)
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Table 3 Pharmacological targets used to validate the optimized parameter set

Pharmacological target Reference drug

CHO-K1/TRPV1 Chinese hamster ovary K1 cells expressing
the transient receptor potential cation
channel subfamily V member 1

Capsaicin

HEK-293/TRPM2 Human Embryonic Kidney 293 cells
expressing the transient receptor potential
cation channel, subfamily M, member 2

(agonist)

HEK-293/GABAAR Human Embryonic Kidney 293 cells
expressing the ”-aminobutyric acid type A
receptor

”-aminobutyric acid

U-2 OS/TRPV1 human osteosarcoma U2OS cell line
expressing the transient receptor potential
cation channel subfamily V member 1

Capsaicin

HEK-293/P2X7R Human Embryonic Kidney 293 cells
expressing the purinergic receptor subclass
P2X7

BzATP, (20(30)-O-
(4-Benzoylbenzoyl)
adenosine-50-triphosphate
tri(triethylammonium)

7 Discussion and Conclusions

DoE was performed to optimize the set of analytical parameters used in a new drug
screening procedure. This is a simple application of the method that provided useful
results with good efficiency (time and resources vs results).

We adopted an unconventional DoE approach: the screening design, instead of
being employed to reduce the number of factors, was used to reduce the number
of levels of one of the factors, taking advantage of the specific knowledge of the
image analysis process. This simplification made possible, in a second analysis,
a direct and simpler comparison among all main parameters, thereby avoiding
the more complex General Factorial design. This second design, which we called
optimization in this study, was performed with a Resolution V Fractional Factorial
design. A standard Response Surface design could not been employed since all
factors are qualitative and intermediated values could not be envisaged (see: [18]).
The choice of using a Fractional Factorial design, which ignores third order
interactions, is largely supported by the evidence that results are little influenced by
pairs of factors (interaction of the second order), validating the initial assumption of
a negligible contribution of higher order interactions.

J
Fig. 9 Validation of the optimized set on different cells/drugs (see Table 2): Rsq (a) and T-B
(b) values are always improved with the optimized set of parameters (black columns) rather than
with the suboptimal one (gray columns), with a single exception (HEK-293 GABAAR exp.1,
Rsqopt < Rsqsubopt). The percent variations are shown in (c), where Rsq variations refer to the right
y-axis, while the T-B variations to the left y-axis
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The unconventional choice of a general full factorial, followed by a fractional
factorial design, allowed us to downsize the number of runs. A traditional general
factorial, with 4 factors at 2 levels and 1 at 3 levels, would have required 48 (24 � 3)
runs for each replicate. With our approach, we made 6 (3 � 2) runs for the first
phase and 16 (2(5–1)) for the second analysis, with a total of 22 and a saving of
26 runs with respect to a single general factorial design. Considering 3 replicates,
we saved 78 runs. Each MaLIA run (inputting data, setting parameters, waiting
for analysis elaboration and collecting results) takes at list 7–10 min to a skilled
operator. Accordingly, we saved up to 13 h on a total forecasted effort of 24 h,
i.e. 54 % saving. Overall, by this DoE approach, we saved time, gaining more
information.

Finally, the use of the Blocking reveals that the impact of the experimental day
could not be neglected in this study, which embraces 2 years’ work of development
of the drug screening platform. Interestingly, only the T-B, but not the Rsq, was
subjected to inter-day variation. This result can lead to two conclusions: first,
this influence may deserve further analysis after final validation of the screening
platform. Secondly, experimental data could have been transformed to correct
for blocks, thus obtaining a result independent of day-to-day variability (see [1];
Chap. 2). However, the excellent validation of the optimized set of parameter
demonstrates that the result is robust enough to make a more sophisticated analysis
not necessary. Further investigation might involve a refinement of the quantitative
thresholds used for some of the parameters (e.g. threshold for Minimum response
filtering). If we consider the results in terms of the final application, the observed
inter-day variation appears to reflect the process of optimization of the biologi-
cal and biochemical conditions during the progressive development of the drug
screening platform. On the other hand, they provide direct evidence that also in
sub-optimal experimental conditions, the set of choice guarantees the best possible
result. This evidence receives further confirmation by the fact that a consistent
improvement was observed independently of the cell lines and drug type. Overall,
this is an important prerequisite to consider this new approach for the study of
different pharmacological targets, in an unbiased way and in an industrial context.

In conclusion, our work demonstrates that the application of DoE on the selection
of software parameters, although still poorly exploited, can provide very useful
results by reducing the number of trials compared to a complete OVAT approach.
In this respect, it is worth noticing how a conscious introduction of constraints
to reduce the degrees of interactions, along with a two-stage design, can greatly
simplify the modelling and thus the obtaining of the result.
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